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ABSTRACT

The objective of this work was to explore ways of making a monolithic form

of catalyst for CO2 lasers. Au/MnO2 was chosen as the catalyst material to be

worked with. The approach chosen was to pelletize the Au/MnO2 powder and

epoxy the pellets to stainless steel sheets as structural supports.

The CO oxidation reaction over Au/MnO2 powder was found to be first

overall, and the reaction rate constant at room temperature was 4.4 + 0.3

cm3/g.s. The activation energy was 5.7 kcal/mol (23 kJ/mol).

The BET surface area of the pellets was found to vary from 125 to

140 m2/g between different batches of catalyst. Pellets epoxied to stainless

steel strips showed no sign of fracture or dusting when subjected to thermal

tests. Pellets can be dropped onto hard surfaces with chipping of edges but

not breakage of the pellets. Mechanical strength tests performed on the pel-

lets showed that the crush strength is roughly one-fourth of the pelletizing

force.

The apparent activity and apparent activation energy over the pellets were

found to be less than over the powdered form of the catalyst. The lower ap-

parent activity and activation energy of the pellets are due to the fact that the

internal surface area of a pellet is not exposed to the reactant concentration

present in the flowing gas as a result of intrapellet diffusion resistance.

Effectiveness factors varied from 0.44, for pellets having a thickness of 1.1

mm with both faces exposed to the gas, to 0.15 for pellets having thickness of

2 mm and attached with epoxy to a stainless steel strip. The epoxy and the

stainless steel strip were found to simply to block off one of the circular faces of

viii
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the pellets. The epoxy did not penetrate the pellets and block the active sites.

The values of the effective diffusivities were estimated to be between 2.3 x

10 -3 and 4.9 x 10-3 cm2/s. With measurements performed on one powder

sample and one pellet configuration, reasonably accurate predictions can be

made of conversions that would be obtained with other pellet thickness and

configurations.

The results obtained have shown enough promise to further pursue this

approach of making monolithic catalysts for CO2 laser.

ix
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1. INTRODUCTION;

The objeclive of lhi,_ resenrch i._ !0 invp.stignte wny.q of ranking monolithic

catalysts for closed-cycle Iransversely .e.xcited atmospheric pressure configu-

ration (TEA) CO2 lasers. The electric discharge used to excite these pulsed

CO2 lasers generally decomposes some of the CO2. This decomposition is

harmful to long life laser operation both because of file loss of CO2 and build

up of 02. Removal of 02 and replenishment of CO2 can be achieved in certain

applications simply by operating the laser open cycle with continuous flow of

fresh laser gas and consequent removal of dissociation products. However,

for space-based applications mobile applications or other applications involv-

ing weight and/or volume constraints closed-cycle operation with recycling of

the laser gas would be imperative. This requires catalytic recombination of the

decomposition products, CO and 02, to regenerate CO2.

CO + 1/2 02 -cat--> CO2

1.I. APPLICATIONS OF COZ TEA LASERS:

Laser remote sensing is a broad area involving both imaging of objects,

detection of particles in the air, sensing wind speed and direction and distance

ranging (8). Microwave radars are a more conventional method for distance

ranging, but lasers offer several advantages based on their shorter wave-

length, smaller size beam, lesser beam divergence and beam coherence.

Laser radar can create images faster than conventional microwave radars and

with the same resolution (8).

The applications of TEA lasers include sensing wind speed and direction,

identifying compounds in the atmosphere (by spectra of aerosol backscatter

and tracking of hard objects light reflected from the object) (8). Range finding
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and targeting are also applications of CO2 TEA lasers. Remote sensing is

useful in military, commercial-aeronaulic, and environmental applications.

CO2 LASER BASED PROGRAMS:

1. Laser Atmospheric Wind Sounder (8):

The objective of LAWS is to measure, from space, wind speeds from the

surface of the earth up to upper troposphere. LAWS is proposed as one of the

earlh observing systems (EOS) in NASA's Mission to Planet Earth. The EOS

will have different platforms and be cooperative venture with European and

Japanese groups. LAWS has been proposed as a primary experimental de-

vice for a Japanese polar orbiter to be launched in 1997. The LAWS system is

designed to measure wind speeds using aerosol backscatter at different alti-

tudes in 1 km increments. The data obtained can be used for wind field maps

in numerical forecasting models to improve long range forecasts.

The atmosphere contains a significant concentration, about 300 ppm of

common isolope CO2 (12Ci602). Common isotope CO2 cannot be used in

the CO2 laser intended for atmospheric transmission, since the emission fre-

quency resulting from its use would correspond to the absorption frequencies

of the atmospheric CO2, resulling in poor lransmission. l-herefore, rare iso-

tope CO2 (12C1802) will be used in the LAWS laser. There should be mini-

mum exchange or scrambling of any normal isotope oxygen contained in a

catalyst with rare isolope oxygen obtained from dissociation of CO2 in the

laser.
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2. FIREPOND (8):

This is a Strategic Defense Initiative Organization (SDIO) project. In con-

trast to LAWS and other wind velocity and aerosol composition experiments

this CO2 laser radar system is used to detect hard objects. The laser radar

can collect data on the shape and the rotation speed of the object. The CO2

laser radar performs range Doppler imaging and images can be taken at

ranges between 600 and 750 km and be processed in real time.

3

3. ENVIRONMENTAL AND COMMERCIAL PROGRAMS (8):

Another ground based system that has real time signal processing is in

use at the NOAA Wave propagation Laboratories (Boulder, CO). It has been

used to measure the transport of pollution. The system has also been used to

measure wind velocity around thunderstorms and rough terrains, such as

coastlines and mountain valleys. The CO2 laser used here has advantage

over radars in that it can make measurements near the ground. Therefore it

can be seen that the pulsed CO2 lasers have several remote sensing applica-

tions both military and non military, which require long life operation with high

conversion efficiency and good power stability.

1.2. PROBLEMS ASSOCIATED WITH CO z LASERS:

CO2 lasers are normally filled with a gas mixture of N2, He and CO2. In

addition there is always some water vapor present since it is difficult to clean

many construction materials (18). The decomposition of CO2 to CO and 02 is

harmful to long life laser operation both because of the loss of CO2 and be-

cause of the buildup of 02 (18). The loss of CO2 results in a corresponding

gradual loss of power. The buildup of even relatively small concentrations of
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02 molecules can cause rapid power loss and even complete laser failure.

CO has no deleterious effect on the laser performance at moderate concentra-

tions.

Removal of 02 and replenishment of CO2 can be achieved in certain ap-

plications simply by operating the laser open cycle with continuous flow

through of fresh laser gas and the consequent removal of dissociation prod-

ucts. However for space-based applications or other applications involving

weight and/or volume constraints, the amount of gas required for open-cycle

operation would be unacceptable and instead, closed laser operation with re-

cycling of the laser gases would be imperative. Achievement of the closed-

cycle operation of pulsed CO2 lasers requires catalytic recombination of the

decomposition products, CO and 02 to regenerate CO2. A typical configura-

tion for a closed cycle laser is shown in Figure 1.

Candidate catalysts must have the following features:

1. High efficiency at steady state laser conditions, which are generally

25°C to 100oc and about 1 atm of total pressure with low partial

pressures of CO and 02.

2. Minimum heating of the catalyst should be required to minimize the

power consumption in the laser.

3. The catalyst must be active at stoichiometric ratios of 02 and CO.

4. It should show no inhibition by CO2 or other components of the laser

environment.

5. It should be thermally and mechanically sound that is it produces no

particulates during vibration or thermal cycling.

6. It should have long lifetime with a stable activity.
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Figure 1. Closed-cycle 002 TEA laser schematic
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, There should be minimum exchange or scrambling of any normal iso-

tope oxygen contained in a catalyst with rare isotope oxygen obtained

from dissociation of rare isotope C02 in a laser.

1.3. OTHER APPLICATIONS OF CO OXIDATION CATALYSTS:

One of the major applications of CO catalysts is removing CO from ex-

haust of combustion systems. In this emission control application the thermal

energy needed to raise the catalyst to operating temperatures is available and

excess oxygen which tends to accelerate CO oxidation, is either already pre-

sent or easily available by injecting air. Both these characteristic are not pre-

sent in the laser application.

Another major use of CO oxidation catalysts is removing low levels of CO

that contaminate breathing air. The CO would be present primarily as the par-

tial oxidation product of combustion process in situations where contamination

of breathing air may occur. They are in underground mines, inside burning

buildings and aboard submarines. This application differs from laser applica-

tion in that it has the advantage that there is always excess oxygen available.

However it has a disadvantage in common with the laser application in that

CO oxidation has to occur at relatively low temperatures. Therefore it can be

seen that most the catalyst that are used for applications other CO2 lasers are

not effective for the CO2 lasers.

Catalysts that have been tried as CO oxidation catalysts for CO2 lasers

include the following: Pt/SnO2, Pd/SnO2, Cu/CuO, Pt, Pd/SnO2, Rh/SnO2,

Au/CeO, Ru/MnO, Pt/MnO, Au/Fe203 and Au/MnO2 (6). These materials fall

into a class of catalysts called "noble metal reducible oxide" (NMRO) catalysts

(15). This class includes noble metals which are dispersed over a metal
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oxide. This metal oxide can be reduced to the parent metal under reaction or

pretreatment conditions. In some cases the noble metal can be oxidized and

the metal oxide can be converted to a complex compound or alloy.

Conventional noble metal catalysts are dispersed over refractory oxides

such as AI203. The refractory oxide acts as a inert support, that is, it does not

participate in the reaction and just provides a means of maintaining high noble

metal dispersion (15). CO adsorbed on the noble metal strongly inhibits 02

adsorption and thus the reaction proceeds at a slow rate at low temperatures.

Over conventional base metal oxide catalysts, oxygen is held too strongly for it

to be removed by CO at low temperatures. Since CO and 02 have to compete

for the same surface sites over noble metals, it is likely that the mixture of two

components in the composite NMRO material provides separate sites for CO

and 02 adsorption (15).

The catalyst used should be in a monolithic form, that is, in a continuous

unitary structure. The monolithic form of the catalyst has several advantages

over the catalyst used in form of particulate beds. One of the advantages of

using the catalyst in the monolithic form, over that in a particulate form, in-

cludes design flexibility of the reactor. For example, it is difficult to have a par-

ticulate catalyst in a horizontal reactor tube because of the tendency of the

catalyst to sag away from the top of the tube, providing a bypass channel. By

their nature particulates are free to move when disturbed by pressure surges,

shrinkage during the life of the catalyst or other mechanical actions. Therefore

special care is taken with fixed bed particulate catalysts to avoid settling or at-

trition. These precautions include operating the fixed bed in a vertical position

with gas flowing down to avoid fluidization. Monolithic reactors can be oper-

ated in Up flow or down flow and vertically horizontally.
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One particularly significant difference between the monolithic and

particulate catalysts lies in their pressure drop characteristics. It has been

found that the pressure drop for monolithic catalysts are two to three orders of

magnitude lower for the same length of bed and flow rate of gas than for

comparable particulate systems (41). The lower pressure drop can be

achieved without loss in mass transfer conversion efficiencies even at high

gas flow rates. This property is the single most important from a reactor design

standpoint.

The LASCAT program provides a means to design a monolith catalyst

section that will satisfy a user specified set of design requirements (7). The

program calculates the bulk average gas temperature, composition and pres-

sure along the length of the monolith. The adjustable pnrameters required to

specify the monolith catalyst section are the monolith dimensions, gas inlet

properties and catalyst properties.

1.4. OBJECTIVE OF THIS WORK:

The objective of this work is to explore ways of making a monolithic form of

NMRO catalyst materials for CO2 lasers. Most of the effort related to develop-

ing a low temperature CO oxidation catalyst thus far has been expended on

platinized tin oxide systems. Although Pt on tin oxide can exhibit considerable

CO oxidation activity in this application, acceptable activity is observed if the

catalyst undergoes extensive pretreatment. Unfortunately these pretreatments

often lead to considerable CO induction periods often lasting several days

during which the observed activity declines before reaching a maximum.

Even after acceptable activity is recovered these catalysts exhibit steady de-

cay in performance over time. MnO2 based catalysts are the most active ones



7

9

for the oxidation of CO (19). It has been found that the performance of

Au/MnO2 superior to that of Pt/SnO2 (6) with regard to boll] catalytic and decay
l

characteristic. Furthermore, the Au/MnO2 catalyst is less costly than Pt/SnO2

(6) catalysts. The fact that no pretreatment is required for Au/MnO2 (6) catalyst

is also a significant advantage for Au/MnO2 catalysts with regard to laser ap-

plications (5,6). Therefore Au/MnO2 was chosen as the catalyst to be investi-

gated.

1.5. PREVIOUS WORK ON GOLD CATALYSTS:

Until now most of the gold catalysts investigated were supported on inac-

tive ceramic oxides, such as SiO2 (20-26), AI203 (23-25), MgO (24-26) and

TiO2 (29), or unsupported gold filaments (30), powder (31,32), sponges (33),

fillings (35) and gauze (36). The chemical reactivity of the gold catalysts has

been studied for oxidation by oxygen or nitrogen oxides of CO (10, 20, 31, 33)

and H2 (21,24, 26, 30-32) selective oxidation of organic compounds by nitro-

gen dioxide (22), hydrogenation of alkenes (36). The conventional gold cata-

lysts prepared by impregnation have been reported to be far less active for CO

and H2 oxidation by oxygen, than platinum group metal catalyst, though they

are superior in selectivity for only a few reactions such as oxidation of 1-pen-

tanol to 1-pentaldehyde by NO2 (22) and the hydrogenation of 1-pentene to n-

pentane (36). Gold catalysts prepared by coprecipitation from HAuCI4 and ni-

trates of various transition metals and calcined in air at 400oC have produced

ultrafine gold particles smaller than i0 nm which were uniformly dispersed on

the transition metal oxides (12). These catalysts have shown markedly en-

hanced catalytic activities for CO and H2 oxidation due to the combined effect

of the gold and the transition metal oxides, for example, completely converting
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1% CO in air to CO2 at 30oC at a relative humidity of 76%. They have been

found to be active even at -70oC for CO oxidation (10).

10

1.6. POSSIBLE WAYS OF MAKING A MONOLITHIC CATALYST:

]here can be two ways to get Au/MnO2 in monolithic form. One of tech-

niques involves coprecipilating a mixture of HAuCI4 and Mn(NO3)2 and then

calcining the precipitate to give Au/MnO2 powder. This powder can then be

pressed into pellets and attached to a support structure such as a metal plate.

Another technique involves the simultaneous dispersion of the Au/MnO2

as it is coprecipitated on a preformed support, for example, a porous ceramic

monolith. The process used to develop the catalyst depends upon many fac-

tors such as the chemistry of the catalyst components and their possible pre-

cursors, the concentration of different components required, the physical

strength required, the reaction conditions of the catalyst in use, and the need

and ease of removing contaminants. The major advantage of using the first

technique over the second technique is that we can start with Au/MnO2 pow-

der which we know is active. Another advantage of using the first technique is

that a uniform distribution of the catalyst can be achieved over the entire

monolithic structure.

The major advantage of the second technique is that catalyst developed in

this case will have adequate strength since the support can be stabilized to

resist reaction conditions before the active phase is incorporated. The major

problem with the second technique is the development of the catalyst chem-

istry.

One of the conclusions from LASCAT studies was that the catalyst layer

could be fairly thick because of the relatively low activity of the catalysts corn-
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pared to automotive monolith catalyst. Therefore one of the ideas to make

monolithic catalyst for CO2 lasers included attaching catalyst pellets to a sup-

port such as stainless steel strip. The technique for this work was to press ac-

tive Au/MnO2 into pellets and attaching them to a stainless steel strip.

The advantage of pressing the catalyst powder into pellets is that it gives

catalyst reasonable strength to withstand attrition in the reactor. The pellets

can be attached to rigid support to make it into monolithic form thereby reduc-

ing the pressure drop across the reactor and providing flexibility in the design

of the reactor. Another reason that motivated the decision to chose the first

technique was the fact that development of chemistry for catalyst manufacture

could be avoided.

Certain questions that needed to be probed before Au/MnO2 can be used

in a monolithic form in CO2 lasers. One of the most important question that

arises is whether the catalyst can be pressed into pellets that have enough

mechanical strength to withstand thermal and mechanical shocks they might

be subjected to in the lasers without breaking or shedding particles. Another

question that needs to be answered is whether Au/MnO2 pellets can actually

be attached to stainless steel stdp. The effect on catalyst activity of the epoxy

used to attach the pellets must be explored. Another question which needs to

be probed into is whether the pellets have significant internal diffusion resis-

tances.
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2 MATERIALS. APPARATUS AND PROCEDURE.,.%

2.1. C,,HEMICALS USED:

Reagent grade chemicals used for preparation of the catalyst were

ordered from Aldrich. The chemical used were:

1. Hydrogen tetrachloroaurate trihydrate (HAuCI4.3H20)

2. Managanese nitrate hexahydrate (Mn(NO3)2.3H20)

3. Sodium Carbonate (Na2CO3)

2.2. CATALYST PREPARATION:

The catalyst that was prepared is called 10 atom % gold catalyst, since it

contains 10 atoms of Au for every 90 atoms of Mn. HAuCI4°3H20 is a crys-

talline powder and is kept in dark. The catalyst was prepared by dissolving

0.8 g of the gold compound (for 10 atom % catalyst) in 250 ml. of water and

then dissolving 5.6 g of Mn(NO3)2"3H20 in a separate container of water.

Then 200 ml of 0.5 molar sodium carbonate was added.to a precipitation ves-

sel (liter sized beaker). The precipitation vessel was then put over a stirring

plate with a Teflon stirring bar in the sodium carbonate solution. The gold and

the manganese solutions were then added dropwise over a period of 20 min

and the solution was stirred for another 5 min. The stirrer was then turned off

and precipitate was allowed to settle. After the solution was decanted off the

precipitate, the precipitate was washed three times with 500 ml of distilled

water at 90oc. The precipitate was dried at 110oc for 21 hours. The dried

precipitate was crushed and put in an oven at 400oC for 4 hours. The catalyst

was obtained in form of a powder. This procedure was obtained from Hoflund

and Gardner (6).

12
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2.3. PELLET PRESSING;

The catalyst powder was pressed into pellets by using a press and a die.

The pellets had diameter of 4 mm and, depending upon the mass of the cata-

lyst used, pellets of varying thickness were pressed. The pellets were pressed

under a force of 0.5,1.0 and 1.5 ton. The pellets were attached to the support

with Vac Seal epoxy resin obtained from Perkin-Elmer Corporation. The

epoxy is designed to seal leaks in stainless steel ultrahigh vacuum chambers,

has a bakeout temperature of 150oc, and is usable to 10 `9 Torr. The epoxy

was applied to one of the faces of the pellets and that face of the pellet was

pressed down on the stainless strip. The Vac Seal epoxy resin has a set time

of 3 hours. The following are the some of its properties:

1. Viscosity

2. Operating temperature range:

3. Coefficient of expansion:

4. Water absorption, 30 days at 25oc

5. Shelf Life

12000 cps

-60oc to 150oc

6 x 105 cm/cm/oC

0.18%

6 months

2.4. BET SURFACE AREA MEASUREMENTS:

Single point BET experiments (38) were performed to determine the sur-

face area of the catalyst. The system used is shown in Figure 2. The catalyst

was first outgassed by heating the catalyst to 200oC in flowing He for

approximately 20 min and then maintaining the catalyst at a temperature of

200oc for a period of 20 min. The catalyst was the allowed to cool back to

room temperature in flowing He. During the process of outgassing the line

from the sample cell to the thermal conductivity detector was disconnected to



Ij'"
_J

_J
i

J
J

J

/ -fJ

14

1oo0 PPM

Kr/He

GAS MANIFOLD &
THERMAL

_ CONDUCTIVI_'

DETECTOR

±
SAMPLE
CELL

POWER
SUPPLY
UNIT

MPLIFIER MacADIOS

i=,.._ SIGNAL

MACINTOSH PLUS

v GAS FLOW DIRECTION

Figure 2. BET set up



r

J
.r7 15

prevent the contamination of the thermal conductivity cell with the outgassed

water vapor.

A stream of gas composed of the adsorbate (Kr) and inert carrier (He) was

passed through the outgassed catalyst. Tile concentration of the Kr in He was

set at a level were the catalyst is covered by an average of about one

monolayer of Kr at 77 K. This level corresponds to a relative pressure (P/Po) of

0.3, where p is the partial pressure of Kr in the sample cell and Po (2.0 Torr) is

the saturation vapor pressure of Kr at 77K. The composition of gas used in our

case was 1000 ppm of Kr in a balance of He. The pressure at the sample cell

was 1 atm. The concentration of the adsorbate was continuously monitored by

a thermal conductivity cell.

The valves were first set to bypass the sample so that no Kr would adsorb
e

and the thermal conductivity detector could be balanced. The sample cell was

then cooled to LN2 temperature and Kr allowed to adsorb on the catalyst.

After sufficient time had elapsed to allow monolayer coverage of the catalyst

(40-45 min for samples weighing 10 mg), Kr was desorbed by heating the

sample cell to room temperature. Due to desorption there was a change in the

concentration of Kr in the gas stream passing through the thermal conductivity

cell resulting in a change of signal. The response of the thermal conductivity

cell is proportional to the rate of gas desorbing.

The signal from the thermal conductivity cell went to a power supply unit

(GOW MAC MODEL 40-200) which transferred it to an amplifier which magni-

fied the signal ten times before passing it to a Macintosh Analog Digital Input

Output System (MacADIOS model 411) made by GW instruments. The

MacADIOS was interfaced with a Macintosh Plus computer, and data was

collected by the computer using a program written in Microsoft Quick BASIC.
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Another program written in Quick BASIC then analyzed the data and inte-

grated the peaks obtained. The programs are listed in section 7.1.2 of the ap-
T

pendix. Before determining the surface area of the Au/MnO2 catalysts, the

thermal conductivity cell was first calibrated using aluminum oxide pellets from

Alfa Products having a surface area of 100 m2/g, per the Alfa catalog.

2.5. ACTIVITY TESTS:

2.5.1. TEST REACTOR:

Figure 3 is a flow diagram of the test reactor system. The test reactor used

was a 1/2 inch O.D. stainless steel tube 5 inches long. A stoichiometric ratio of

1% CO and 0.5 % 02 was passed through the test reactor at atmospheric

pressure. The reactor was maintained at constant temperature by means of

Fisher Isotemp 500 series oven. The concentration of CO2 was monitored by

using a Beckman Industrial infrared analyzer.

The CO2 infrared analyzer was first calibrated by flowing N2 through it and

adjusting the reading of the analyzer to zero, and then flowing 1% CO2 in N2

and adjusting the reading of the analyzer to correspond to 100. The amount of

CO2 formed when the mixture of CO and 02 was passed through the reactor

was obtained from the reading obtained from the analyzer and calibration

chart provided by the manufacturer.

The samples that were tested for their activity included catalyst powder,

catalyst pellets, catalyst pellets attached to the stainless steel strip by epoxy,

and pellets with epoxy applied to only one face of the pellet. The reactor op-

erated as a fixed bed reactor for the powdered form of the catalyst. The reac-

tor also was also made to operate vertically with the gas flowing down to avoid
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fluidization. Pellets were placed so that the circular faces of the pellets were

parallel to the gas flow.

2.5.2. SAFETY FEA TURES IN TEST REACTOR:

CO a colorless, odorless gas with the same specific gravity as that of air.

Its inhalation causes asphyxiation by formation of metastable chemical com-

pounds with hemoglobin and biochemical constituents which reduces the

availability of oxygen for the cellular systems of the body (37). Due to the toxic

nature of CO precautions have to be taken to first avoid any leaks in the sys-

tem, and, if leaks occur, to detect them. The reactor system used in our case

had various types of safety measures to avoid and detect CO leaks in the sys-

tem. They are:

, PURGING:

The entire system was purged to remove CO from the system at end of

the day. The purge gas used was N2. There are three different kinds

of purging procedures in the system. They are:

A) Purging of the reactor cabinet:

This purge can be done by starting the flow of N2 through the reac-

tor cabinet by turning valve V7 (Figure 3) to N2 flow (position 3) and

also turning valve V8 to N2 flow (position 3). This purge should be

carried on for 12 rain using Nz flow rates of 20 cm3/min. This

purges the entire reactor cabinet including the IR analyzer, Reactor

I and Reactor I1.
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B) Purging the CO regulator:

This purges tile entire gas cabinet and can be performed by starting

the flow of N2 and turning valve V5 (see Figure 3) to position I (to

vent) and opening valve V4.

C) Purging the line between the reactor cabinet and the gas cabinet:

This purge can be performed by turning valve V5 to position 3 (to

reactor I) and opening valve V4. Valves V7 and V8 should be

turned towards position 3 (N2 flow) to purge the entire system that is

the rector and the gas cabinet simultaneously.

More details on purging the system are given in section 7.2.1.

. INTERLOCK SAFETY MEASURES:

Interlock safety measures are also provided in the system to prevent

CO leaks in the system. The interlock safety system consists of a CO

detector system, a normally closed solenoid valve and a relay system.

If the level of CO in the surrounding air rises above 100 ppm the detec-

tor sounds an alarm and the signal is conveyed to the relay box which

opens the circuit and thus closes the solenoid valve, stopping the flow

CO to the reactor cabinet. In the above mentioned case both the

alarms that is the CO detector alarm and the relay box alarm are trig-

gered on and red light starts blinking on both the detector and the relay

box. The relay box also opens the circuit also when the hood fan

(exhaust) is not working. In this case both the hood alarm and the

alarm in the relay box go on and red light slarts blinking on both the
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relay box and the hood alarm system. The power to the solenoid valve

is thus cut off by the relay box thus closing the solenoid valve and pre-

venting CO from escaping into the exhaust.

2.6. THERMAL TEST;

The pellets attached to the stainless steel strip were subjected to thermal

cycling. The samples were exposed to temperatures of 100oc and 0oc for a

period of 10 min alternatively to check whether the pellets showed signs of

cracking or fracture or dusting. The thermal cycling test was repeated ten

times.

2.7. MECHANICAL TEST;

The pellets pressed under different forces were tested for their crush

strength using an Instron machine. A pellet was placed on a fixed flat hard

surface and was crushed by applying force through another flat piece that was

placed on top of the pellet and that was mobile. The instrument was calibrated

to read zero when the upper mobile piece just rested on top of the pellet. The

mobile piece was then moved down with levers and the force required to

completely crush the pellets was noted.
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3. RESULTS AND DISCUSSION;

The experiments were performed on four different batches of Au/MnO2

prepared at different times. Activity tests were performed on both the pow-

dered form of Au/MnO2 and on pellets. BET, thermal cycling and mechanical

tests were also performed on the pellets. Blank tests were performed with no

catalyst in the test reactor and the IR detector showed no CO2 formation for

these tests.

Activity tests were performed by passing the gas through the reactor for at

least five hours. The conversion of CO to CO2 remained constant throughout

this period. All gas flow rates are given at standard temperature and pres-

sure. The reaction was assumed to take place under isothermal conditions

because of the relatively high surface-to-volume ratio of the reactor, low gas

flow rates, and low conversions.

3.1. TESTS ON POWDER:

3.1.1. EXPERIMENTS TO DETERMINE EXTERNAL MASS TRANSFER

RESISTANCE IN THE SYSTEM :

Experiments to determine external mass transfer resistances were carried

out by changing the flow rate of the gas while keeping the ratio of the flow rate

to the mass of the catalyst constant. The mass transfer coefficient is generally

a function of the velocity of the gas over catalyst particles. For lower velocities

the mass transfer boundary layer thickness is large and diffusion limits the re-

action. As the velocity over catalyst particles is increased, the boundary layer

thickness decreases and the mass transfer across the boundary layer no

21
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longer limits the reaction rate. The mass transfer coefficient for flow and reac-

tion in packed beds is given by (1):

kc= DAB(1-_)o_{d v / [IJ. (1-_) o_] }1/2 (I.l / DAB) 1/3 (d £:)-1 (1)

where:

kc = mass transfer coefficient

d = particle diameter (equivalent diameter of sphere of same volume)

DAB = molecular diffusivity

v = supeHicial gas velocity through the bed

p. = kinematic viscosity

¢ = void fraction of the bed

e_= shape factor (external surface area divided by _:d 2)

From the above equation it can be seen that, for constant fluid properties and

particle diameter, kc,_ v 1/2. That is the mass transfer coefficient increases with

the square root of velocity. Therefore, for a mass transfer limited reaction for

the same ratio of mass of the catalyst to the superficial velocity of the gas

through the packed bed, the rate of reaction should vary with v 1/2.

Therefore by reducing tile velocity of the reactants and the mass of the

catalyst in the same proportion, the conversion of CO to CO2 should be differ-

ent than obtained for the same ratio of velocity to mass of the catalyst used

earlier if there is significant mass transfer resistance in the system. The results

obtained were:
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TABLE 1. EFFECT OF FLOW RATE ON REACTION RATE AT CONSTANT

SPACE VELOCITY (BATCH D)

Experiment Mass of the

catalyst (g)

Flow rate

(cm3/min)

Space

velocity

(cm3/gs)

5.8

Conversion

(%)

1 O.2 7O 56

2 0.1 35 5.8 56

Since no change in the conversion of CO to C02 is observed, the as-

sumption of negligible external mass transfer resistance in our system holds

for the powdered form of the catalyst.

3.1.2. ,,_PAC,,,E VELOC,.,ITY VARIATION AND FIRST-ORDER FIT;

The experiments below were performed at room temperature. The space

velocity of the reactants through the reactor was varied by varying the gas flow

rate.



.j s"

J' ,_-

24

TABLE 2. EFFECT OF SPACE VELOCITY ON REACTION RATE AT

CONSTANT TEMPERATURE (BATCH C)

Experiment Mass of the Flow rate Space

catalyst (g) (cm3/min) velocity

(cm3/gs)

5.8

Conversion

(%)

1 0.2 7O 5O

2 0.2 55 4.6 55

3 0.2 35 2.9 67

First-order-overall behavior has been reported for the reaction of

stoichiometric mixtures of 02 and CO over tin oxide catalysts (43). That is, the

rate is proportional to [o2]a[co] b, where the orders in 02 and CO sum to one

and [02] = 0.5 [CO] such that the rate is directly proportional to the CO

concentration. From the data obtained above it can be verified whether the

reaction over Au/MnO2 shows tirst-order dependence or not. The plug-flow

equation for a first-order isothermal system is given by (17):

-In(l-x) = kt,ue
(sv)

where

x = fractional conversion of CO to C02

klrue = true reaction rate constant, i.e., measured in absence of mass

transport effects

SV = space velocity =(q/W)

(2)
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and where

W = mass of tile catalyst

q = gas flow rate

Therefore, for a steady state first-order plug-flow reactor under isothermal

conditions and constant W, a plot of -In(l-x) vs 1/q should give us a straight

line.

Figure 4 shows the plot of -In(l-x) vs 1/q for the powdered form of the

catalyst obtained from Batch C. The reaction approximates a first-order sys-

tem well. Therefore the reaction rate is proportional to [o2]a[co] b, where sum

of a and b equals one. The value of the reaction rate constant for Batch C at

room temperature was determined to be 4.6 cm3/g.s.

i

r"
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J • I ' I '
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11q

_' -In(l-x)

Figure 4. First-order fit for Au/MnO2 powder
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3.1.3. TEMPERATURE VARIATION AND ACTIVATION ENERGY;

Experiments to investigate the effect of temperature on conversion were

done using a reactant flow rate of 70 cm3/min, a catalyst mass of 0.2 grams

and, therefore, a space velocity of 5.8 cm3/g.s.

TABLE 3. EFFECT OF TEMPERATURE ON REACTION RATE (BATCH C)

Experiment Mass of the

catalyst (g)

0.20

Temperature (oc) Conversion (%)

1 23 5O

2 0.20 34 63

3 0.20 49 74

The dependence of reaction rate constant on temperature is assumed to

be based on the Arrhenius reaction rate law:

klrue = Alrue exp(-Elrue/RT)

where:

klrue = reaction rate constant

Atrue = pre-exponential factor

Etrue = activation energy for the reaction

T = temperature in K at which the reaction is carried out

Taking the natural logarithm of both sides of (3) we get

(3)

In ktruo = In Alrue - Etrue
RT (4)
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Therefore a plot of In k vs 1/T should give a straight line (17). The value of k is

obtained from Equation (1) using the conversion obtained in each case.

Figure 5 shows the dependence of reaction rate constant on temperature. The

plot of In k vs 1/T gives a straight line, confirming that the effect of temperature

on reaction rate is through an Arrhenius dependence on reaction rate con-

stant. The activation energy for the reaction over Batch C can be determined

from the slope of this line and is found to be 5.7 kcal/mol (23 kJ/mol).

C

6.3

6.2

6.1

6,0

5.9

5.8

5.7

[] Ink

0.0032 0.0033 0.0034

lIT

Figure 5. Activation energy of Au/MnO2 powder

3.1.4. EXPERIMENTS TO DETERMINE TRUE REACTION RATE

CONSTANTS:

The following experiments were performed on Batch B of the catalyst. All

experiments were performed at room temperature and a reactant flow rate of

70 cm3/min. The experiments were performed to determine the true reaction

rate constant for this batch of catalyst.
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TABLE 4. EXPERIMENTS TO DETERMINE TRUE REACTION RATE

CONSTANT (BATCH B)

28

Experiment

1

Mass of the catalyst (g)

0.24

Conversion (%)

61

2 0.24 57

3 O.28 69

The reaction rate constant for Batch B at room temperature was deter-

mined to be 4.6 cm3/gs.

Experiments with Batch D of catalyst were pertormed at flow rates of 70

cm31min and at room temperatures, The experiments were performed to de-

termine the true reaction rate constant. The following results were obtained:

TABLE 5. EXPERIMENTS TO DETERMINE TRUE REACTION RATE

CONSTANT (BATCH D)

Experiment

1

Mass of the catalyst (g)

0.2

Conversion (%)

55

2 0.2 55

The reaction rate constant for Batch D at room temperature was deter-

mined to be 4.7 cm3/g s.
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3.2. TESTS ON PELLETS:

Three different types of configurations were used while performing tests

on pellets. These three kinds of configuration have been abbreviated in the

text as follows:

1. NENS: Pellets with no epoxy or strip attached to them.

2. ES: Pellets which were attached to the stainless steel strip with epoxy.

3. F,J_.: Pellets with epoxy applied to one of the circular faces of the

pellets without being attached to the stainless steel strip.

The cross sections of these configurations are, schematically:

catalyst pellet

.y!..,,,..,,..,,.,,,.,,../,,,.,,.,

NENS ES

epoxy

i

ENS

stainless steel strip

3.2.1. BET SURFACE AREA MEASUREMENTS;

BET surface area measurements were performed on batches A, B, D.

Experiments performed with catalyst powder gave flat peaks. The flat peaks

were due to saturation of one of the instruments used in the surface area mea-

surements. One of the possible reasons for the saturation to occur is that the

diffusional resistance in case of powdered form of the catalyst is small. This

results in immediate release of adsorbed Kr upon warming and thus, a large
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signal from the thermal conductivity detector leading to saturation of one of the

inslrurnents.

The effect of force under which the pellets were pressed on the surface

area of the pressed pellet was examined with Batch A. The following results

were obtained:

TABLE 6. EFFECT OF PELLETIZING FORCE ON SURFACE AREA OF

PELLETS (BATCH A)

Pelletizing force

(ton, 1 ton = 276 N)

BET surface area (m2/g)

0.5 65

1.0 69

2.0 64

The BET experiments performed on this batch of catalyst showed no effect

of force under which the pellet is pressed on the surface area of the pellet.

BATCH B

The surface area of one of the pellets (pressed under a force of 0.5 ton)

was determined The weight of the sample used was 5.8 mg and its surface

area was found to be 150 m2/g.

BATCH D

The surface area of one of the pellets (pressed under a force of 0.5 ton)

was determined and found to be 126 m2/g.
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Since it was difficult to perform BET experiments with the powdered form

of the catalyst, the exact surface area of the powdered form of the catalyst was

not known. The surface area of the powder is not expected to differ much from

the surface area of the pellets since the surface area of the pellets was found

to be independent of the pelletizing force. The results obtained from BET sur-

face area measurements are summarized below:

TABLE 7. COMPARISON BETWEEN SURFACE AREAS AND REACTION

RATE CONSTANT OF VARIOUS BATCHES

Batch BET area of 0.5 ton

pellet (m2/g)

A 65

B 150 4.6

D 126 4.7

k true

(cm3/g-s)

3.2.2. THERMAL CYCLING:

The thermal cycling tests were performed by alternatively subjecting the

catalyst pellet to temperatures of 0oc and 100oc for a period of 10 min at

each temperature. This process was repeated ten times. These tests were

performed on Batch C and the pellets showed no signs of cracking or powder

formation during this test.
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3.2.3. MECHANICAL TESTS:

The thickness of the pellets varied with the force under which the pellets

were pressed. For the same mass of the catalyst (0.2 g) the thickness and the

density of the pellets varied as follows:

TABLE 8. EFFECT OF PELLETIZING FORCE ON THICKNESS AND

DENSITY OF PELLETS (BATCH D)

Pelletizing force

(ton, 1 ton = 276 N)

0 (POWDER)

Thickness (mm) Density (g/cm 3)

5.90

0.5 2.0 7.96

1.0 1.9 8.38

1.5 1.8 8.85

Mechanical tests were performed on Batches C and D of the catalyst. The

crush strength of pellets pressed under forces of 0.5 ton and 1.0 ton and 1.5

ton was determined. The results obtained are as follows:
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TABLE 9. EFFECT OF PELLETIZING FORCE ON CRUSH STRENGTH OF

THE PELLETS (BATCH D)

33

Pelletizing

force

0.5 ton

138 N

1.0 ton

276 N

1.5 ton

415N

Pelletizing

pressure

5.14 x 104 Ib/in 2

3.44x 108N/m 2

1.02 x 105 Ib/in 2

7.03 x 108 N/m 2

1.54 x 105 Ib/in 2

1.06 x 10 9 N/m 2

Crushing force

250 Ibs

34.6 N

450 Ibs

62.2 N

750 Ibs

104 N

Crushing

pressure

1.28 x 104 Ibs/in 2

8.8 x 107 N/m 2

2.31 x 104 Ibs/in 2

1.59x 108N/m 2

3.85 x 104 Ibs/in 2

2.65x 108N/m 2

The results indicate that the crush strength of the pellets increases with the

force under which the pellets were originally pressed. The crush strength is

approximately one-fourth of the pelletizing pressure.

3.2.4. ACTIVITY TESTS ON PELLETS."

3.2.4.1. EXPERIMENTS TO DETERMINE EXTERNAL MASS TRANSFER

RESISTANCE:

Experiments to determine whether external mass transfer resistances

were present in the system were carried out by changing the gas flow rate

while keeping the space velocity constant. The mass transfer coefficient for

laminar flow through a circular tube is given by (39):
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where:

kc = mass transfer coelficient

d = diameter of the circular tube

DAB = molecular diffusivity

v = superficial velocily of the gases

!1 = kinematic viscosity

Equation (5) shows that the mass transfer coefficient is generally a function of

velocity of the gas in the test reactor. For lower velocities, the mass transfer

boundary layer thickness is large and diffusion limits the reaction. Therefore, if

there are any external mass transfer resistances present in the system, the

conversion obtained for lower llow rates would be less for the same mass to

flow rate ratio. The experiments were performed with pellets pressed under a

force of 0.5 ton and attached to a stainless steel strip. The following results

were obtained:

TABLE 10. EFFECT OF FLOW RATE ON REACTION RATE AT CONSTANT

SPACE VELOCITY (BATCH D)

Experiment Mass of the

catalyst (g)

Flow rate

(cm3/min)

Space

velocity

(cm3/gs)

5.8

Conversion

(%)

1 0.2 7O 15

2 0.1 35 5.8 14
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The results obtained above justifies our assumption of negligible external

mass transfer resistances in the test reactor.

3.2.4.2. EXPERIMENTS TO DETERMINE APPARENT REACTION RA TE

ORDER:

The following experiments were performed at room temperatures.

TABLE 11. EFFECT OF SPACE VELOCITY ON APPARENT REACTION RATE

AT CONSTANT TEMPERATURE (BATCH D)

Experiment Mass of the

catalyst (g)

Flow rate

(cm3/min)

Space

velocity

(cm3/g.s)

5.6

Conversion

(%)

1 0.21 70 9

2 0.21 35 2.8 12

3 0.21 11 0.9 30

The powdered form of the catalyst fit the first-order plug-flow equation. In

the case of pellets we expect that internal diffusion resistances may be pre-

sent. However, the apparent reaction order would still remain first order in that

case (1). Figure 6 shows a plot of -In(l-x) vs 1/q for the pellets. The data fits

the straight line reasonably well.
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Figure 6. First-order lit for Au/MnO2 pellets

3.2.4.3. EXPERIMENTS TO DETERMINE THE APPA REN T A C TI VA TION

ENERGY:

The experiments to determine apparent activation energy were performed

at flow rates of 70 cm3/min and a space velocity of 5.6 cm3/gs.

TABLE 12. EFFECT OF TEMPERATURE ON THE REACTION RATE AT

CONSTANT SPACE VELOCITY (BATCH D)

Experiment Mass of the

catalyst (g)

0.21

Temperature (oc) Conversion (%)

1 23 9

2 0.21 38 17

3 ' 0.21 49 25
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In addition to an apparent reaction order, there is also an apparent activa-

tion energy, Eapp (1). This is the activation energy one would calculate, using

the experimental data, from the slope of a plot of In k as a function of 1/T at a

fixed concentration of A. From Figure 7 the apparent activation energy of the

reaction is found to be 2.9 kcal/mol, which is one-half the true activation

energy (5.7 kcal/mol) obtained from Figure 5.

The first-order rate equation is

- r = kap p [CO]s = _ ktrue [CO]s (6)

where

kapp = Aapp exp(-Eapp / RT) (Measured, Apparent) (7)

ktrue = Alrue exp(-Elrue / RT) (True) (8)

actual overall rate of reaction

rate of reaction that would result

if the entire interior surface were exposed

to the external pellet surface concentration [CO]s (9)

For the case of strong internal diffusional resistance, the effectiveness factor

is

= 1 / o = (1 /l_) (De / ktrue) 1/2 (10)

where e is the Thiele modulus. Substituting Equations (7 - 10) into Equation

(6), we obtain:

Aapp exp(-Eapp/RT) = (De 1/2 / L) Alrue 1/2 exp(-Etrue/2RT) (11)

Assuming that De varies negligibly with temperature, this results in:

Aapp = (De 1/2 / L) Atrue 1/2 (12)

and "
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Eapp = Etrue/2

which corresponds to the result that we obtained above.
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Figure 7. Activation energy for Au/MnO2 pellets

3.2.4.4. THIELE MODULUS ANALYSIS:

The activity tests on pellets were performed on various configurations:

pellets attached to stainless steel strip (ES), pellets with epoxy applied to one

side of the pellets without being attached to the stainless steel strip (ENS), and

simple pellets (NENS). All experiments were performed at room temperature

using flow rates of 70 cm3/min. All the pellets were pressed under a force of

0.5 ton, except where noted otherwise. The results obtained are as follows:
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TABLE 13. EFFECT OF EPOXY AND STAINLESS STEEL STRIP ON

REACTION RATE (BATCH B)

Experiment Configuration Mass of the

catalyst (g)

0.22

Pellet thick-

ness (mm)

1.11 NENS

2 ENS 0.23 1.1 22

3 ES 0.22 1.1 12

4 ES 0.23 1.1 13

5 NENS 0.22 2.0 21

6 NENS 0.22 2.0 22

7 ES 0.25 2.0 18

8 ES 0.24 2.0 16

Conversion

(%)

31

The table below gives the true and apparent reaction rate constants calcu-

lated by using the isothermal first-order equation.
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TABLE 14. EFFECT OF EPOXY, STAINLESS STEEL STRIP AND

THICKNESS OF THE PELLET ON THE TRUE AND APPARENT

REACTION RATE CONSTANT (BATCtl B)

Configuration

POWDER

NENS (1.1)

ENS (1.1)

ES

NENS (20)

k true

4.6

k apparent

1.97

1.26

0.68

1.25

0.93

The conversion obtained for the pellets was found to be less than the pow-

dered form of the catalyst under similar conditions of flow rates and tempera-

ture. The lower activity of the pellets is due to the internal resistance to diffu-

sion of reactants. When the reactants diffuse through into the pores within the

catalyst pellet, the concentration at the pore mouth will be higher than that in-

side the pore, and the entire catalytic surface is not exposed to the same con-

centration. Therefore tile apparent reaction rate is product of the effectiveness

factor _ and the reaction rate with all active surface exposed to [CO]s:

-r = _ ktrue [CO]s (14)

The effectiveness factor for a semi-infinite slab-geometry pellet is given by:
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(15)

o= 1

I3¢

where

L = characteristic diffusion length = half-thickness of semi-infinite slab

D e = effective diffusivity

Effective diffusivity accounts for the facts that:

1.

(16)

Not all the area normal to the direction of the flux is available for the

molecules to diffuse.

2. The path is tortuous.

3. The pores are of varying cross-sectional area.

4. Diffusion in small pores occurs by Knudsen diffusion.

The experimental effectiveness factor for the various configurations is de-

fined as (1):

__ k

ktrue (17)

where the value of k was determined from Equation (3) for various configura-

tions, and the value of ktrue was determined from Equation (2) with the exper-

iments performed with the powdered form of the catalyst. The data obtained

from configuration NENS for pellets having a thickness of 1.1 mm was used to

calculate the experimental effectiveness factor for that configuration using

Equation (17), which is correct for a semi-infinite slab-geometry pellet but

which is an approximation for our finite pellets. This experimental effective-
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ness factor was then used to determine the Thiele modulus (_) for that configu-

ration (NENS)from Equation (16). Then an appropriate characteristic diffu-

sion length, L, for the actual pellet was calculaied from:

L

volume of the pellet

external geometric surface area of

the pellet exposed to the flowing gas (18)

For the NENS configuration, this is:

L

/[R2T

2 (_ R2 + _ R T) (19)

where,

T = thickness of the pellet

R = radius of the pellet

Assuming the effective diffusivity is independent of the thickness and

density of the pellets and pressing force of the pellets, the theoretical Thiele

modulus for configurations other than NENS can be determined using equa-

tion"

e (other configurations) L (other configurations)

e (NENS) L (NENS) (20)

For the pellets epoxied to the stainless steel strip it was assumed that no dif-

fusion takes place through one of the faces of the pellets and, hence, the

characteristic diffusion length for such configurations was taken as:
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L

_R2T

(2 _ R T + _ R 2)
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(21)

Once the Thiele modulus was obtained for a particular configuration, the ef-

fectiveness factor was calculated using Equation (15). The results from the

above calculations are summarized below:

TABLE 15. COMPARISON OF THEORETICAL EFFECTIVENESS FACTOR

WITH THE EXPERIMENTAL EFFECTIVENESS FACTOR

(BATCH B)

Configura-

tion

NENS

Diffusion

length

(mm)

0.35

O

(Thiele

rood.)

2.25

Thick-

ness of

the pellet

(mm)

1.1

Theoret-

ical _2

set = 0.44

Experimen- Error

tal_ (%)

0.44

NENS 0.50 3.17 2.0 0.31 0.28

ES 0.66 4.18 2.0 0.24 0.23

ENS 0.53 3.29 1.1 0.30 0.28

ES 0.53 3.29 1.1 0.30 0.15

ES 0.53 7.04 1.1 0.14 0.15

(corrected)

set

=0

10

4

6

5O

7
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The only configuration for which the experimental effectiveness factor

does not agree with the theoretical effectiveness factor is the ES configuration.

The low Thiele modulus for this case is due to asslJmption that the diffusion

takes place through the edges of the pellets. Closer examination of the sam-

ple showed that epoxy covered the edges of the pellet with the result thai no

diffusion took place through them. The corrected ES configuration takes into

account that no diflusion takes place through the edges, and the theoretical

value of the effectiveness factor matches well with the experimental value.

In the table given below the theoretical effectiveness factor found above

was used to calculate the conversion from the first-order plug-flow equation:

-In(l-x) = _ ktrue (W/q) (22)

The conversion obtained was then compared to the experimental conversion

obtained during the activity test. The results are given below:

TABLE 16. COMPARISON OF THEORETICAL CONVERSION WITH

EXPERIMENTAL CONVERSION (BATCH B)

Configura

tion

NENS

NENS

ES

ENS

Diffusion

length

(mm)

0.35

0.50

0.66

0.53

O

(Thiele

modulus)

2.25

3.17

4.18

3.29

Thick-

ness

(mm)

l.i

2.0

2.0

1.1

Theoret-

ical con-

version

Experi-

mental con-

version

set = 31 31

23 21

18 18

24 22

Er-

ror

(%)

set

=0

8

2

6
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The results above show lhal the theoretical conversion corresponds well with

the experimentally obtained conversion.

The effective dJffusivily of the reaclanls within lhe pellet is given by:

L 2
D e = ktruQ_

0 2

45

(23)

The value of the effective diffusivity was found to be 2.3 x 10 -3 cm2/s. The ob-

struction free molecular diffusivity of the reactants in N2 using the Chapman

Enskog equation gives a value of 0.14 cm2/s. The obstruction free molecular

diffusivity is related to the effective diffusivity by (39):

De = DAB fE(c / _) (24)

where:

DAB = molecular dilfusivity

f_(¢/'c) = correction factor

= pellet porosity = (volume of void space) / (total volume)

'_ = tortuosity

The simplest form of the correction factor obtained by Feng and Stewart is

f_ = ¢ / 3 (25)

The value of fc calculated from our data is 0.016, which gives the porosity of

the pellet to be 0.05. This value is compared below to another estimate of

porosity.
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BATCH D

Experiments on this batch of catalyst was performed on various configura-

tions. All experiments were performed at room temperature and using reac-

tant flow rate of 70 cm3/min. The following results were obtained:

TABLE 17. EFFECT OF EPOXY AND STAINLESS STEEL STRIP ON

REACTION RATE (BATCH D)

Experiment

2

3

4

5

Configuralion

ES (0.5 ton, epoxy

applied to the

outer circumfer-

ence of the face

attached to the

strip). In cross-

section:

ENS (0.5 ton,

epoxy applied to

the entire face of

the pellet)

Mass of the

catalyst (g)

0.2

0.2

Conversion (%)

12

12

.NENS (0.5 ton)

NE_S (1.0 !on)

NENS (1.5 ton)

0.2 17

0.2 16

O.2 16
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The results above show that the epoxy did not penetrate the pellet and

the epoxy and the stainless steel strip had the same effect on the pellet activ-

ity. The force under which the pellet was pressed had little effect on the acliv-

ity of the pellet.

The table below gives the true and apparent reaction rate constants calcu-

lated by using the isothermal plug-flow first-order equation.

TABLE 18. EFFECT OF PELLETIZING FORCE ON TRUE AND APPARENT

REACTION RATE CONSTANTS (BATCH D)

Configuration

POWDER

NENS (0.5 ton)

NENS (1.0 ton)

NENS (1.5 ton)

ES (0.5 ton)

ENS (0.5 ton)

klrue

(cm31cj.s)

4.7

kapparenl

(cm3/0s)

....... 1.09

....... 1.01

....... 1.01

....... 0.74

....... 0.74

The table below gives the Thiele modulus and the experimental and theo-

retical effectiveness factor obtained from the data.
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TABLE 19. COMPARISON OF THEORETICAL EFFECTIVENESS FACTOR

WITH EXPERIMENTAL EFFECTIVENESS FACTOR (BATCH D)

48

Configu-

ration

NENS

(0.5 ton)

NENS

(1.0 ton)

NENS

(1.5ton)

ES

(0.5 ton)

ENS

(0.5ton)

Diffusion

length

(mm)

0.50

o (Thiele

modulus)

4.2

Thick-

ness of

the pellet

(ram)

2.0

Theoreti-

cal

set = 0.24

Experimen- Er-

tal _-:) ror

(%)

0.24 set

=0

0.22 80.49

0.47

0.66

0.66

3.9

3.7

5.8

5.8

1.8

1.6

2.0

2.0

0.24

0.25

0.17

0.17

0.22 12

0.16 6

0.16 6

The stainless steel strip and the epoxy were found to block one of the

faces of the pellet. The effective diffusivity of the reactants was found to be 4.9

x 10 .3 cm2/so The value of effective diffusivity calculated for Batch D is twice

that calculated for Batch B. The pellet density of both the batches was deter-

mined to be the same.
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The experimental values of the effectiveness factor obtained in Table 19

can be used to calculate the density of the solid Au/MnO2 by assuming that the

effective diffusivity is directly proportional to the pellet porosity that is

De _ E: (26)

therefore

O _ _L

(27)

L (28)

°,o,,on, ,,,,on I
_ (1.5ton) = _ (1.5 ton) (0.5 _-n) I (29)

however

= 1- ( Ppellel/Psolid ) (30)

where"

Ppellel = density of the pellet

Psolid = density of solid Au/MnO2

Since Ppellel is already known, the density of solid Au/MnO2 and hence the

porosity of the pellets can be calculated. The density of the solid Au/MnO2

was calculated to be 11 g/cm 3. This density for the co-precipitated catalyst is

greater than the density of 6 g/cm 3 for an equivalent amount of solid Au and

solid MnO2. The porosities of the 0.5, 1.0, and 1.5 ton pellets were determined

to be 0.3, 0.26, and 0.22, respectively. The fact that the values of the pellet

porosity did not agree with the value of the porosity calculated by Equation
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that Knudsen diffusion plays a role.

factors are given in Table 20.

The corrected values of effectiveness

TABLE 20. COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL

EFFECTIVENESS FACTOR WITH EFFECTIVE DIFFUSIVlTY

CORRECTED FOR POROSITY (BATCH D)

Configu-

ration

NENS

(o.5ton)

NENS

(1.oton)

NENS

(1.5 ton)

Diffusion

length

(mm)

0.50

a (Thiele

modulus)

4.2

Thick-

hess of

the pellet

(mm)

2.0

Theoret-

ical

set = 0.24

Experimen- Er-

tal _ ror

(%)

0.24 set

=0

0.22 40.49

0.47

3.9

3.7

t.8

t.6

0.23

set = 0.22 0.22 set

=0

5O

The theoretical effectiveness factor for the 1.0 ton pellet was found to be

closer to the experimentally obtained effectiveness factor when the effective

diffusivity was assumed to the directly proportional to pellet porosity (4% er-

ror), relative to the case when effective diffusivity was assumed to be indepen-

dent of the pellet porosity (8% error).

In the table given below, tile theoretical effectiveness factors found above

for the case of constant diffusivity was used to calculate the conversion from
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Equation (22). The conversion obtained was then compared to the experi-

mental conversion obtained during the activity test.
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TABLE 21. COMPARISON BETWEEN THEORETICAL CONVERSION AND

EXPERIMENTAL CONVERSION (BATCH D)

Configura-

tion

NENS

(0.5ton)

NENS

(1.oton)

NENS

(1.5 ton)

ES (0.5 ton)

ENS

(0.5 ton)

Diffu-

sion

length

(mm)

0.5

0.49

0.47

0.66

0.66

(Thiele

modu-

lus)

4.2

3.9

3.7

5.8

5.8

Thickness

of the

pellet

(mm)

2.0

1.8

1.6

2.0

2.0

Theoret-

ical con-

version

set = 17

17

16

14

14

Experimen- Error

tal conver- (%)

sion

17 set =

0

16 6

15 6

15 7

14 7

The theoretical conversion calculated is found to be in good agreement

with the experimental conversion.

Besides these batches of catalysl, another batch of catalyst was also used.

This batch of catalyst powder showed far lesser activity than the other batches

and also showed a decline in activity with time, as shown in Figure 8. All the
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other batches of the catalyst showed constant activity over a 5-8 hour period.

The BET surface area (65 m2/g) of this batch of catalyst was found to be less

than Batches B and D. Since no records were maintained by the personnel

who made this batch of catalyst, the actual cause of the low activity and

decline in the activity is not known. However experiments with unwashed

catalyst and catalyst washed with cold water (6) have shown far lower activity

compared to catalysts that were washed with hot water. Another possible

reason for the lower activity of this batch could be overheating of the catalyst

during calcination resulting in collapse of pore walls. The crush strength of

this batch of catalyst was found to be less than Batch D.

c
o

Q

r-
0
(J

o<

Figure 8.

22

2O

18

16

14

12

10

8

0

• I ' I 5 I ""

2 4 6

Time

B % conversion

Variation of conversion with time for bad batch of catalyst: 40°C,

0.2 g, 11.5 cm3/min (STP).
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4. CONCLUSIONS:

The CO oxidation reaction over Au/MnO2 powder was found to be first

order overall, and the true reaction rate constant at room temperature for

Batches B, C and D were found to be 4.6, 4, 4.7 cm3/g.s, respectively. The re-

action rate constant for 1.8 % Pd/SnO2 was found by Stark and Harris to be

8.2 x 10 -2 cm3/g.s (43), approximately 60 times lower. The true activation

energy of the reaction over the catalyst was determined to be 5.7 kcal/mol (23

kJ/mol). The activation energy of CO oxidation reaction over 1.3 % Pt/SnO2

and 1.8 % Pd/SnO2 is 9.9 and 9.5 kcal/mol, respectively (43), approximately

twice the value for Au/MnO2.

BET surface area measurements could not be performed on the powdered

form of the catalyst. The diffusional resistance for the gas desorbing from the

powder was minimal resulting in large amounts of gas being desorbed in a

short interval of time and leading to saturation of the instruments. BET surface

area experiments performed on pellets showed that the pelletizing force had

no effect on the surface area of the pellet. The surface area for Batches B and

D was found to be 150 m2/g and 126 m2/g respectively.

Pellets 4 mm in diameter and from 1.1 to 2 mm thick were pressed from

Au/MnO2 powder. Pellets epoxied to stainless steel strip showed no sign of

fracture or dusting when subjected to the thermal test. Pellets can be dropped

onto a hard surface with chipping of edges but not breakage of the pellets.

The density of the pellets increased with increasing pelletizing force.

Mechanical strength tests performed on pellets pressed under different pel-

letizing forces showed that the crush strength increased from 250 Ibs to 750

Ibs as the pelletizing force increased from 1000 Ibs to 3000 Ibs. The crush

strength is roughly one-fourth of the pelletizing force.

53
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Activity tests performed on the pellets showed that external mass transfer

resistances were negligible over the pellets. The apparent activity of the pel-

lets was found to be less than that of the powdered 'form of the catalyst. The

lower apparent activity of the pellets is due to fact the internal surface area of

the pellet was not exposed to the reactant concentration present in the flowing

gas as a result of intrapellet dittusion resistance. The apparent reaction rate

was determined to be first-order. The apparent activation energy was found

to be 2.9 kcal/mol, which is approximately one-half of the true activation en-

ergy. The variation of the apparent activation from the true activation energy

was explained by accounting for the intrapellel diffusion resistance.

Effectiveness factors varied from 0.44 for pellets having a thickness of 1.1

mm with both faces exposed to the gas, to 0.15 for pellets having thickness of

2 mm and attached with epoxy to a stainless steel strip. The epoxy and the

stainless steel strip were found to simply to block off one of the circular faces of

the pellets. The epoxy did not penetrate the pellets and block the active sites.

The values of the effective diffusivities for Batches B and D were estimated to

be 2.3 x 10 .3 and 4.9 x 10-3 cm2/s, respectively. The porosity of the pellet was

estimated to be 0.3, 0.26, 0.22 for pellets pressed under pelletizing forces of

0.5, 1.0, 1.5 ton, respectively. With measurements performed on one powder

sample and one pellet configuration, reasonably accurate predictions can be

made of conversions that would be obtained with other pellet thicknesses and

configurations.

The results obtained have shown enough promise to further pursue this

approach of making monolithic catalysts for CO2 lasers.



5. RECOMMENDATIONS FOR FUTURE WORK:

Future work on this approach to making monolithic catalysts should con-

centrate on more thermal and mechanical tests on the pellets. The fact that

the crush strength of the pellet increases with the pelletizing force without

having much effect on the effective diffusivity of the pellet suggests that pellets

with higher crush strength can be used in the lasers without any compromise

on the activity. However extensive mechanical and thermal tests need to car-

ried out before coming to any decision. One of the ways of increasing the

strength of the pellet is to add binders to the catalyst. Therefore the effect of

various binders on the strength and the activity of the pellets should be exam-

ined. Another question that needs to be investigated is whether the epoxy is

compatible with laser gases, that is, does it outgas and effect the laser perfor-

mance or not. Therefore the pellets attached to the stainless steel strip need

to be tested in the laser.

The performance of the catalyst should be measured in presence of CO2.

Activity tests in this work were carried out in presence of stoichiometric mix-

tures of CO and 02 which do not stimulate the conditions inside the laser,

where the concentration of CO2 exceeds the concentration of CO and 02.

The performance of Au/MnO2 should be compared with the performance

of other catalysts in consideration for the CO2 lasers such as Pt/SnO2. The

performance of the catalyst should also be observed by adding additives that

would increase the effective diffusivity of the reactants inside the pellets. The

performance of an unpretreated catalyst should be compared with a catalyst

that is pretreated in a reducing atmosphere,in order to understand the effect of

pretreatment on the activity of the catalyst.

55
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As heterogeneous catalysis is a surface phenomenon, the determination

of surface properties plays an important role in catalyst characterization and

in understanding the reaction mechanism. Once tile surface intermediates are

known by various surface characterization techniques, the reaction mecha-

nism can be understood leading to better reactor and catalyst design.

Alternatives other than pellets should also be considered, such as extru-

sions and granules• Extrusions have the advantage that they have a usually

long irregular shape of larger external surface area. They are less dense than

the pellets and hence have less internal diffusion resistance. The advantage

of using granules is that they have a larger external surface area (spherical

shape) and are less dense than the pellets. However both granules and ex-

trusions have less mechanical strength to withstand attrition than pellets. A

comparative study of performance of the catalyst in different forms can lead to

further insights on catalyst performance.
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7.1. BET TOTAL SURFACE AREA MEASUREMENTS:

7.1.1. PROCEDURE:

BET experiments are performed to determine the exposed surface area

of catalysts. Before starting with the BET experiments the catalyst whose sur-

face area has to be determined is degassed. The degassing process re-

quires the sample to be heated in flowing He to 200°C for approximately 20

rain and then maintaining the temperature at 200°C for another 20 min in

flowing He. The sample is then allowed to cool to room temperature in flowing

He.

In the BET experiments performed the adsorbate used was Kr because of

it's lower Po value (2.0 Tort) as compared to N2 (760 Torr) at liquid N2

temperature. A stream of gas composed of adsorbate and inert carrier is

passed through a previously degassed catalyst and the concentration of the

adsorbate monitored frequently by a thermal conductivity cell. Conditions are

first adjusted so that no gas will adsorb and the bridge balanced. Conditions

are then adjusted so that the gas will adsorb on the sample (cooling the

sample to LN2 temperatures). After sufficient time has elapsed (40-45 min for

7-8 mg samples) the sample cell is heated to desorb the Kr and the change in

concentration is of the gas is monitored by the thermal conductivity detector.

The signal is then passed on to an amplifier that magnifies the input by ten

times and transmits the output to a Macintosh Analog Digital Input Output

System (MacADIOS) model 411. The data collected by the MacADIOS is

passed on to a Macintosh Plus through a program written in Quick BASIC.
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Another program in Quick BASIC then analyses the data obtained and

integrates the area under the peak and hence determines the surface area of

the sample. The thermal conductivity detector was calibrated using aluminium

oxide gamma pellets (Alfa products) having a surface area of 100 m2/g. The

pellets were made by pressing the catalyst powder under forces of 0.5, 1.0,

1.5, 2.0 ton.

7.1.2. COMPUTER PROGFtAMS:

, B_Q£,IBt  L.t

LIBRARY "411 Drivers Interface"

LIBRARY "DalaManipulation Interface"

CALL mainit

DIM a%(24000)

CALL msinit(4,1,4999,1)

CALL ainx( 1,0,23999,0,0 ,VA RPTR(a%(0)),0,0,0,0,0,0)

PRINT "Enter name of new output file"

LINE INPUT OUTF$

OPEN OUTF$ FOR OUTPUT AS #1

FOR n = 0 TO 23999

PRINT #1 ,n a%(n)

NEXT n

CLOSE #1

PRINT "Next step is to input file and compare"

PRINT "Hit <RETURN> to continue"

LINE INPUT instring$
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INF$ = FILES$(1 ,"TEXT")

PRINT "Input file is ";INF$

OPEN INF$ FOR INPUT AS #1

FOR n = 0 TO 23999

INPUT #1 ,n, a%(n)

PRINT n,a%(n)

NEXT n

CLOSE #1

STOP
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LIBRARY"411 Drivers Interface"

LIBRARY"DataManipulation Interface"

DIM a%(24000)

OPEN "FILE NAME" FOR INPUT AS #1

WHILE NOT EOF(1)

FOR n = 0 TO 23999

INPUT #1 ,n,a%(n)

NEXT n

WEND

sumll = 0

FOR n = 0 TO n

sumll = a%(n)+suml !

NEXT n

avgll = sum11/n :

sum21 = 0
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FOR n = n TO k

sum21 = sum21+a%(n)

NEXT n

integll = sum2t-(n-k)*baseline

PRINT "THE PEAK AREA IS ",integll

sum31 = 0

FOR n = k+l TO 23999

sum31 = sum31+a%(n)

NEXT n

avg21 = sum31/23999-(k+l)

PRINT"THE AVERAGE B.L.

PRINT"THE AVERAGE B.L.

larl=100

FOR n = 0 TO 23999

IF (larl<a%(n)) THEN larl=a%(n)

NEXT n

VALUE BEFORE THE PEAK IS"avgll

VALUE AFTER THE PEAK IS"avg21

PRINT "THE LARGEST VALUE IN THE ARRAY IS"lad

match = integl I/integ21

PRINT"THE RATIO OF THE TWO PEAK AREAS IS"match

shiftl = (avg 1 I-avg21)/(larl-avg21)

PRINT"THE BASE LINE SHIFT IS" shiftl

CALL plot(0,0,200,300,VARPTR(a%(n)), 120,180,300,1,0,1,0)

STOP
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7.2. CO OXIDATION REACTOR ;

7.2.1. ROUTINE OPERA TIONS:

65

• Installing new catalyst sample:

Purge the entire reactor cabinet with N2 for about 12 min.

fittings of the reactor to change the catalyst.

Open

. Changing CO Cylinders:

Purge the entire reactor and the gas cabinet with N2 and then remove

the pressure gauge and change the cylinders.

t Calibrating the system:

With the power off verify that the front panel reading of the IR analyzer

reads zero. Apply power and turn the range switch to tune. Allow the

analyzer to warm up for at least one hour and preferably for 8 hours.

Turn range switch to position 1. Pass zero gas (N2) to the sample

inlet and adjust the zero control on the front panel so that it reads zero

in all three range positions. Now connect the upscale gas(l% CO2 +

N2) to the inlet of the IR analyzer. Turn on the CO2 cylinder and turn

valve V8 to position 1 (CO2 flow) and valve V9 to position 2. Verily

that the Range switch is in position 1 and adjust the gain control on

the front panel so that the meter reads 100. The value of on the meter

when CO is pa_ssed through the system gives the conversion of CO to

CO2.



7

jr

_J

J fJ

66

. Installing catalyst in Reactor I1:

Purge the lines between the reactor cabinet and gas cylinder cabinet.

Open the fittings of the reactor and change the catalyst.

. End of the day shutdown:

Purge lines between the gas cylinder cabinet and the reactor cabinet.

Shut off the flow of N2 when the entire system has been purged. If the

system is left running overnight then a sign on the door should be

stuck explaining the danger if the alarm is sounding.

7.2.2. EMERGENCY PROCEDURES;

° REACTOR I FAILURE WHILE CO IS FLOWING THROUGH THE

SYSTEM:

In case of reactor failure (fittings becoming loose or development of

leaks) follow instructions on how to purge the gas regulator ,turn valve

V6 to position 2 (shut off) and turn valve V7 to position 2 (shut off).

When the reactor is fixed start the flow of N2 through the system and

check for possible leaks in the reactor fittings. Start the flow of CO

only after making sure that there are no leaks in the system. Start the

flow of CO through the system by turning valve V7 to position 1 (CO

flow) and turning valve V6 to position 1 (to reactor).
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2_ EXHAUST FAN NOT WORKING:

When the exhaust fan is not working turn _,alve V6 to position 2(shut

off) and valve V5 to position 2 (shut off). Turn valve V7 to position 2

(shut off) so that all flow to the reactor is stopped. The alarm system

would automatically shut off the solenoid valve.

. LEAKS IN THE SYSTEM:

As soon as leaks are detected in the system by the CO detector the

alarm would go on and solenoid valve shut off. As soon as the alarm

goes on turn valve V5 to position 1(to vent) and valve V6 to position 2

(shut off). Get all the people out of the lab, open all the lab doors and

prevent anyone from entering in to the room. If the exhaust is not

working then notify from Physical Plant Services and get assistance of

two or more knowledgeable persons before re entering the room.

After sufficient time has elapsed (for CO to disperse in the room) the

cause of the leak should be determined and the leak fixed. N2 should

then be passed through the system to make sure that there are no

leaks present in the system.


